
DPM Modular Structure
DPM is, by the necessity of when and where it is used, modular.

This greatly reduces the dependency requirements at various stages of
bootstrapping and allows for plenty more use cases than if all requirements and
functionality were jammed into one single binary.

This also allows each piece of DPM to be a dedicated purpose component,
allowing features to be more appropriately focused on.

Using a modular design in a C-based implementation essentially means that the
dpm binary itself’s primary concern is as a command and argument routing
engine to shared objects with a common interface specification using reserved
symbol names to determine entry point.

The modules themselves perform the work that DPM does. This provides the
ability for 3rd party extension of DPM’s capabilities without modification of the
DPM source code, and allows different functionality of DPM to be managed by
packages that manage the modules which perform that work.

DPM Core
The core DPM component is concerned primarily with command routing and
module loading.

A sample implementation would strongly resemble this:

dpm/ # Core DPM router/loader project
 ├── CMakeLists.txt
 ├── include/
 │ └── dpm/
 │ ├── module.h # Module interface definitions
 │ └── types.h # Common types/structures
 ├── src/
 │ ├── main.c # dpm command entry point
 │ ├── module.c # Module loading/management
 │ └── router.c # Command routing logic
 └── tests/

https://dpm.darkhorselinux.org/2025/02/16/dpm-modular-structure/

 └── module_tests/ # Tests using dummy test modules

DPM Modules
The modules are the things that do what we are talking about when we are
performing work with DPM. As you’ve no doubt noticed there are some
commands in other parts of this documentation that refer to dpm_create-repo
and dpm_build-package or similar. In future versions this will be a repo
module and a package module, so that the command, instead of a separate
script, is dpm repo create with various arguments and dpm package build
with likewise arguments, such that users do not have to track the presence of
various tools — it is simply a subcommand structure passed to the dpm tool which
corresponds to the modules it has installed to determine which capabilities it has.

The Dark Horse Linux Project will provide a common set of modules for basic
package management and repository interaction capabilities. For now these will
be under one project structure to develop them in parallel, but these will
eventually be separate repositories and projects. This allows the focus introduced
by the separation of concerns to benefit the functionality provided. A sample core
DPM modules project structure would resemble:

dpm-modules/ # Official modules repository
 ├── package/ # Package management module
 │ ├── CMakeLists.txt
 │ ├── src/
 │ └── tests/
 │
 ├── signature/ # Optional signing module
 │ ├── CMakeLists.txt
 │ ├── src/
 │ └── tests/
 │
 └── repo/ # Repository management module
 ├── CMakeLists.txt
 ├── src/
 └── tests/

This reduces the initial dependency requirement from, for example, the “gpgme”
dependency tree, which is rather heavy, from being required at dpm install time

to only requiring libstdc++ and then the dependencies for any modules that are
needed as the need is introduced, allowing you to start using the package
manager to install needed functionality instead of manual compilation and
installation, much earlier.

This also additionally allows anyone who can, to create modules that replace
functionality of what is provided by the Dark Horse Linux Project in case some
people can do it better and realize that they should — without needing to be
making changes to the core project.

Command Syntax
It should look something like this:

dpm [<dpm args>] <module-name> [<module args>] <command>
[<module command args>]

