
DON Paths

Configuration
/etc/don/config

The main configuration file for DON.

Repository Configurations
/etc/don.repos.d/<repository_name>.repo

Each repository has a configuration file dedicated to it with various options.

Download Cache
/var/cache/don/packages/<repo_name>/<package_name>

Don downloads packages and caches them to reduce pull time and network load
from redownloading.

Repository Metadata Cache
/var/cache/don/repos/<repo_name>/metadata

Don caches the metadata it downloads from repositories so that frequent searches
do not create request burdens on the repository, with the added benefit of
improving response time.

Transaction and Logistical Database
/var/lib/don/dondb

This stores transactions processed by DON as well as some base logistical
information such as which repository which packages were downloaded from.

This information is used, for example, rolling back sets of package upgrades to
undo a recent system update.

https://dpm.darkhorselinux.org/don-paths/

Lock File
/var/lock/don.lock

The lock file ensures that only one transaction is processed at a time.

Logging
/var/log/don/don.log
SYSLOG

DON optionally logs to either (or both) syslog and/or a main log file.

Package Blacklist Directory
/etc/don/blacklist.d/

This directory contains .conf files, each of which are a line-delimited list of
regular expressions. If a package meets this regular expression, DON will refuse
to install it and will skip over it in updates.

Be aware that should a package name your blacklisted package as a dependency
in a transaction that DON will fail and refuse to install the package naming your
package as a dependency.

Blacklisted package detection occurs at the end of the dependency resolution
stage. Here’s an example of the workflow:

Suppose you have blacklisted a package named apples. You have another
package that depends on apples, called bananas. You run a don update, which
will update all packages on the system that have an available upgrade package.
DON will:

Detect that bananas has an update available.1.
During dependency resolution, discover that apples is a dependency.2.
Detect that apples is blacklisted.3.
Skip updating bananas, and continue with the other updates.4.
At the end of the update process for all packages getting updated, warn5.
the user that bananas was skipped due to its dependency on a blacklisted

package.

Be cautious when blacklisting packages, as it doesn’t just use package names, it
uses regular expressions, so'.*' will prevent you from doing much at all with
packages on your system. The expression matches against PROVIDES,
REPLACES, and NAME.

