
DPM Package Format

Overview
This document outlines the DPM package format.

package_name-1.0.x86_64.dpm
├── contents(.tgz)
│ ├── etc/
│ │ └── myapp/
│ │ └── conf.d/
│ │ └── main.config
│ └── usr/
│ └── bin/
│ └── myapp
├── hooks(.tgz)
│ ├── POST-INSTALL
│ ├── POST-INSTALL_ROLLBACK
│ ├── POST-REMOVE
│ ├── POST-REMOVE_ROLLBACK
│ ├── POST-UPDATE
│ ├── POST-UPDATE_ROLLBACK
│ ├── PRE-INSTALL
│ ├── PRE-INSTALL_ROLLBACK
│ ├── PRE-REMOVE
│ ├── PRE-REMOVE_ROLLBACK
│ ├── PRE-UPDATE
│ └── PRE-UPDATE_ROLLBACK
├── metadata(.tgz)
│ ├── ARCHITECTURE
│ ├── AUTHOR
│ ├── MAINTAINER
│ ├── DEPENDENCIES
│ ├── DESCRIPTION
│ ├── CONTENTS_MANIFEST_DIGEST
│ ├── LICENSE
│ ├── NAME
│ ├── PACKAGE_DIGEST
│ ├── HOOKS_DIGEST

https://dpm.darkhorselinux.org/dpm-package-format/

│ ├── PROVIDES
│ ├── REPLACES
│ ├── SOURCE
│ ├── CHANGELOG
│ └── VERSION
└── [signatures(.tgz)]
 ├── contents.gpg.signature
 ├── hooks.gpg.signature
 └── metadata.gpg.signature

From the outside, a DPM package is just a gzipped tarball with a DPM filename
extension.

Inside that extracted tarball, you’ll see 4 more bundled inside it, named:

signatures1.
contents2.
metadata3.
hooks4.

These archives all serve different purposes and their content formats are very
simple.

The signatures, metadata, and hooks archives are generated by the DPM
package creation process largely automatically. After metadata is generated, the
package creator can tailor items in the metadata prior to finalizing the package
and wrapping it.

The package creation process is out of scope for this document, however, and will
be discussed in more detail in dedicated documents on the workflow.

signatures
The signatures archive MAY contain GPG-signed cryptographic checksums of the
other archives as signature files. These are optionally generated automatically
during the package creation process, by the DPM package creation utility. The
default checksum algorithm is SHA-256, but is configurable to future-proof DPM
against evolving threat landscapes.

These signatures ARE NOT used to encrypt ANY payload of the package or
provide ANY form of confidentiality to the package. They are purely used for
integrity validation. In other words, when present, the 3 signatures CAN BE
used to validate that the contents of the package (the files being installed), the
metadata (information about the package), and the hook scripts (operational
triggers) have not been tampered with.

The method for this is by computing a local cryptographic checksum of the
corresponding archive, identified by relying on reserved names in the package
structure, and validating the signature of the archive checksum by comparing it
against that locally computed version, using the package creator’s public key
stored in /etc/dpm/keys/.

The public key in /etc/dpm/keys/ is usually populated at a prior point by
DPM’s companion utility, DON by pulling it from a remote repository where the
package is located. Public keys can also be manually imported from a local file to
this location using the DPM utility. This behaviour will be defined more clearly in
the documentation for DON.

DPM can be configured to require or not require GPG integrity validation using
these signatures.

If GPG integrity validation is disabled, it will prohibit the use of anything in this
directory. Integrity validation can still be performed against the package
metadata in the DPM database or backing tree during and after installation, but it
will potentially be vulnerable to tampering and so is fundamentally less secure.

If GPG integrity validation is required, but GPG signatures are not present, DPM
will refuse to install the package.

If GPG integrity validation is required, but one of the nested archives’ signature
fails validation, `DPM will refuse to install the package with an error message
explaining which piece failed signature checks, and a warning that this could
indicate tampering.

contents
The contents archive contains the actual files being deployed by the package. As

you can likely see already from the tree diagram, files in this archive are staged in
their absolute path, adjusted from the system’s root filesystem. So, for example,
this package has an ‘etc/myapp/conf.d/main.config‘. This is meant to arrive
on the installing machine at '/etc/myapp/conf.d/main.config' when
installed.

In some situations, it is necessary to override the top level directory target from
the root of the filesystem to another directory, such as when using DPM to
populate a sysroot when building a CHROOT environment, a container, or a new
operating system. DPM provides that target override functionality as a
commandline argument.

There’s really not much to this section. It is meant to be designed in such a way
that all the package creator really has to do is stage a directory tree with files
where they will need to go when they end up installed on the target machines
installing the package, and then populate the metadata and optionally sign the
package.

NOTE: For various efficiency reasons, the contents archive is added last when
creating the package, so that metadata, hook, and signature extraction can occur
more rapidly due to the sequential compression method used.

hooks
Hooks in DPM are very similar to hooks in Git. In the case of DPM, there are
reserved filenames in this directory that represent operations that DPM performs,
and are triggered when that action is performed.

For example, if something needs to happen on the system prior to install, the
PRE-INSTALL hook is triggered prior to the package installation, so, the contents
of what is in that file will be executed as a shell script. Conversely, if that fails or
returns a non-zero exit code, the PRE-INSTALL_ROLLBACK hook is triggered, so
that cleanup from whatever was being done there can occur.

This is powerful and dangerous, as your rollback script must be able to check for
the conditions it needs to clean up, so be aware of that if you decide to make this
complicated.

You may not add files to the hooks archive. This is by design to keep you from
bundling entire unnecessary runtimes inside the package.

The burden of idempotency of these operational triggers is deferred to the
package creator.

metadata
To make things easy, the DPM creation process automatically creates the
metadata directory and contents so that package setup is straight forward
without much guesswork. Once generated, the metadata archive contains a list of
of reserved file names:

CONTENTS_MANIFEST_DIGEST
DEPENDENCIES
PROVIDES
REPLACES
PACKAGE_DIGEST
ARCHITECTURE
AUTHOR
DESCRIPTION
LICENSE
NAME
SOURCE
VERSION

CONTENTS_MANIFEST_DIGEST
The CONTENTS_MANIFEST_DIGEST reads like a table of contents and lists a few
whitespace delimited columns containing details about every file to be installed
by the package: control designation, file checksum, and absolute
filepath.

Using the same example package structure, this is what the content digest looks
like:

C $CHECKSUM 0755 user:group /usr/bin/myapp

N $CHECKSUM 0644 user:group /etc/myapp/conf.d/main.config

The first column, control designation, determines whether the file is
designated as “controlled” (‘C‘) or “not controlled” (‘N‘). During package updates
and package removals, “controlled” files are replaced or removed. Inversely,
during updates and removals, “not controlled” files (‘N‘) are left in place. The
intended use case for this is configuration files or any other data files that should
be left alone during updates. In the event that a “not controlled” file produces a
file conflict with what is being deployed, the file in the updated package will be
saved to the same location with an appended suffix .dpmnew. This should be
familiar behaviour. This ensures that reinstallation or updates of packages will
not overwrite configuration files that can sometimes be difficult to recreate or
that recreating would expand the scope of a standard patching window to reduce
touch time on the host. By default, during package metadata generation, all files
in the contents are designated as “controlled”, and the package creator will need
to manually specify files that should be “not controlled”. This is deliberate to
reduce the amount of time it takes to spec a package with the added benefit of
producing a soft captological barrier to the creation of an overabundance of files
on the system which are not controlled by the package manager but which are
installed by the package manager.

The second column is for the cryptographic checksum of the file. By default this
is a SHA-256 fingerprint of the file, but the algorithm is configurable to future-
proof DPM against an evolving cryptographic landscape. It should be noted that
this checksum is only calculated against the file contents.

The third column is the permissions intended for the file after install. This is
prepopulated with what exists in the contents at the time of package metadata
generation time and exists in the format for easy override.

The fourth column is the combination of user and group separated by a colon
character that should own the file. This user:group pair is also prepopulated at
package metadata generation time and also is easy to override simply by
changing the value before finalizing the package creation.

The fifth column is the derived path of the file when the root of the filesystem is
not modified. It should be the path of the file in the contents archive prefixed with
a preceding forward-slash.

DEPENDENCIES
The dependencies file is a line-delimited list of expressions that serve as rules
for dependencies on other packages.

If there are no dependencies, this file can be blank.

Following suit with our example, here’s some sample contents of a
DEPENDENCIES file:

glibc > 2.21
glibc < 2.39
libstdc++ > 0

The pattern for these rules is deliberately inflexible:

Rules are delimited by newline.1.
Rules are 3-term expressions.2.
The first term of the expression is the package name that is required.3.
The second term is an operator. Available operators are ‘<‘, ‘>‘, ‘==‘, ‘!=‘,4.
‘>=‘, ‘<=‘.
The third and final term is a version number.5.

So, reading our example, this package requires a version of glibc greater than
2.21, but less than 2.39, and requires any version of libstdc++ to be installed.

Regarding the package name, it can be substituted for names listed in the
“REPLACES” or “PROVIDES” metadata for another package. This is useful for
metapackages, or virtual packages, or transitionary packages that replace legacy
packages under a new name. This concept will be explained in more detail in the
section dedicated for those files.

PROVIDES
The provides file is a line-delimited list of “virtual package names” or “aliases”
for the package that can be used to identify the package.

For example, let’s say you have a collection of packages that all represent
different programs in a larger system with many components. This is actually

seen often in Desktop Environments. You could have a mostly empty package
called, for example, XFCE, which is a popular desktop environment that lists
xfce-terminal — which is its terminal emulator and is packaged separately —
as a dependency. Then, you can list the other packages that make up the XFCE
suite of packages, all listed as dependencies to your mostly empty XFCE package.

In that mostly empty file, you could list XFCE in the provides file so that other
packages can depend on the whole XFCE environment being installed or not.

Technically you could do this with just the package name, but this is a cleaner
way to do it, so that you could have the name of the package be xfce-desktop-
suite that “provides” xfce or xfce4-desktop, allowing a package to have
multiple aliases.

This also allows you to have interchangeable components that meet the same
dependencies be used in an intermixed fashion without creating package naming
conflicts. For example, let’s say a package depended on xfce4-terminal or
sakura terminal to be installed and could work with either, both packages could
list standalone-terminal in its provides list and your package that just
needed one of them could use the one you preferred because the dependency was
met.

This feature is prone to complexity and can do some powerful things if used by
package maintainers correctly, such as creating system profiles for complex
metapackage installations that are highly tailorized to the system.

This also, for example, allows apache2 and httpd to be used interchangeably in
some cases.

REPLACES
The replaces file serves a different purpose. This is a newline delimited list of
packages that the package replaces altogether and would meet as a dependency
to another package in those packages’ stead.

So, if a package is renamed between versions, you would list the old name in this
file so that installing this package would meet the dependency listed if another
package uses the old name still. This allows multiple packages to be listed for
when projects consolidate functionality from multiple libraries while maintaing

some degree of api compatibility, so that one package meets what used to be the
dependencies that several packages used to meet.

PACKAGE_DIGEST
The PACKAGE_DIGEST file is a cryptographic checksum of the sorted entries in
CONTENTS_MANIFEST_DIGEST. This is used for file integrity validation and
tamper indicators when evaluating the health of installed packages.

HOOKS_DIGEST
Like the PACKAGE_DIGEST, the HOOKS_DIGEST file is a cryptographic checksum
of the files in the HOOKS archive for integrity validation.

ARCHITECTURE
This is a one line file that contains a string identifier for the package architecture
if applicable. (example: x86_64)

CHANGELOG
The CHANGELOG is a multiline list of changes to the package over time as versions
increment. It is not meant to be a changelog for the software itself but for the
packaging process for that software over time.

New entries begin with an asterisk ('*'), a timestamp in YYYY-MM-DD, a name,
and an email address.

AUTHOR, MAINTAINER DESCRIPTION,
LICENSE, NAME, SOURCE, VERSION
Like the ARCHITECTURE file, these are all, except DESCRIPTION, one-line files
that contain the values their names represent.

DESCRIPTION can be multiple lines.

In the case of AUTHOR and MAINTAINER it’s highly recommended to use a name
w i t h a n e m a i l a d d r e s s (e . g . “Chris Punches
<chris.punches@silogroup.org>“) and in the case of SOURCE it’s highly

r e c o m m e n d e d t o u s e a U R L (e . g .
“https://source.silogroup.org/SILO-GROUP/rex“).

Package Maintainer Guidance: SELinux
While technically not part of the format specification, in some cases you may need
to create new SELinux file context definitions or type enforcement rules for your
paths in your package.

DPM is agnostic to these.

The recommended path for solving this is to have package creators who need this
create an optional second sidecar package exclusively for SELinux policy
deployment, as is done in many RPM-based distributions.

S o , f o r myapp-1.0.x86_64.dpm y o u m i g h t a l s o h a v e a
myapp_selinux-1.0.noarch.dpm.

This myapp_selinux package would contain the respective .te and .cf files
being deployed to accompany your package for selinux-enabled hosts.

It is not recommended to use DEPENDENCIES on this secondary package
structure, so that if your target system does not use the same paths, or doesn’t
have SELinux infrastructure installed, you can still use the main program without
issue, and if the target machine does have that infrastructure they can solve their
label issue by installing the optional selinux sidecar package.

This approach provides the added benefit of clearly separating SELinux policy
management from individual application deployments to allow coverage of a much
broader range of target systems.

https://source.silogroup.org/SILO-GROUP/rex

