
DPM Repository Format
The DPM repository consists of metadata and packages. The metadata is used to
generate a small file-based database that is downloaded, cached, and used by DON
for repository operations.

Repository Caching
Ultimately, what DON downloads and caches from the repository to do what it
does, is a file at ${repository_root}/metadata.db.

In order to generate metadata.db, the repo creation tool, dpm_create-repo first
generates a hierarchal tree structure. This is a sample repository tree used to
generate metadata.db:

repository/
├── metadata.db
├── metadata/
...
│ ├──
4ffd74ecd2df9fb9748cc8ca91fcc8fc71323380e062b4f3...19226/
│ │ ├── metadata
│ │ │ ├── ARCHITECTURE
│ │ │ ├── AUTHOR
│ │ │ ├── CONTENTS_MANIFEST_DIGEST
│ │ │ ├── DEPENDENCIES
│ │ │ ├── DESCRIPTION
│ │ │ ├── LICENSE
│ │ │ ├── NAME
│ │ │ ├── PACKAGE_DIGEST
│ │ │ ├── PROVIDES
│ │ │ ├── REPLACES
│ │ │ ├── SOURCE
│ │ │ └── VERSION
│ │ └── signatures
│ │ ├── contents.signature
│ │ ├── hooks.signature
│ │ └── metadata.signature
│ ├──

https://dpm.darkhorselinux.org/dpm-repository-format/

56213bb6cec8932c7adff33a97c2dfe7d3758c32dc46effb...e239a/
│ │ ├── metadata
│ │ │ ├── ARCHITECTURE
│ │ │ ├── AUTHOR
│ │ │ ├── CONTENTS_MANIFEST_DIGEST
│ │ │ ├── DEPENDENCIES
│ │ │ ├── DESCRIPTION
│ │ │ ├── LICENSE
│ │ │ ├── NAME
│ │ │ ├── PACKAGE_DIGEST
│ │ │ ├── PROVIDES
│ │ │ ├── REPLACES
│ │ │ ├── SOURCE
│ │ │ └── VERSION
│ │ └── signatures
│ │ ├── contents.signature
│ │ ├── hooks.signature
│ │ └── metadata.signature
│ ├── REPO_MANIFEST
│ └── pubkeys
│ └── DHL2.pubkey
└── packages
 ├── aarch64
 │ ├── myapp-0.1.2-0.dhl2.aarch64.dpm
 │ └── myapp-selinux-0.1.2-0.dhl2.aarch64.dpm
 ├── noarch
 │ ├── myapp-0.1.2-0.dhl2.noarch.dpm
 │ └── myapp-selinux-0.1.2-0.dhl2.noarch.dpm
 └── x86_64
 ├── myapp-0.1.2-0.dhl2.x86_64.dpm
 └── myapp-selinux-0.1.2-0.dhl2.x86_64.dpm

It can be simplified as:

repository/
├── metadata/
│ ├── [package_digest_hash]/
│ │ ├── metadata/
│ │ │ └── [metadata files]
│ │ └── signatures/
│ │ └── [signature files]
│ ├── REPO_MANIFEST

│ ├── pubkeys/
│ │ └── [public signing keys]
│ └── metadata.db
└── packages/
 ├── aarch64/
 │ └── [architecture-specific packages]
 ├── noarch/
 │ └── [architecture-independent packages]
 └── x86_64/
 └── [architecture-specific packages]

At the top level, you will see a metadata directory and a packages directory.
You will also see a metadata.db and REPO_MANIFEST at the top level.

Metadata Directory
The metadata tree in the repository structure closely resembles the DPM
Backing Tree, and this is by design to facilitate what DON will do with them.

Once the DPM Repo metadata is created, it then populates the small database at
metadata.db from that data.

The DON client downloads the repository metadata db, and caches this repository
metadata locally with a configurable TTL (Time-to-Live). Once this cache expires,
DON refreshes this cache from that repository at the time of an interaction (or
unless the command to refresh it is run).

This metadata cache is for the purpose of listing package dependencies and
file/package lookups so that the data to determine which package provides a file,
or what files are provided by a package, is present in addition to what packages
are required to be installed for any package in the repository to be installed.

There are a few subtle differences in the repository metadata from the DPM
Backing Tree:

Hooks are not copied1.
A file called REPO_MANIFEST exists, generated by the dpm_create_repo2.
tool at the time of the last update of the repository.

The REPO_MANIFEST File
The REPO_MANIFEST file is generated when the repository metadata is
generated. During repository creation the utility finds all .dpm files recurvisely in
the packages top-level directory and then calculates the cryptographic checksum
to create a two column line delimited table file of the following format:

$CHECKSUM $file_path\n

This pairing of repository paths to package digest hashes compliments the pairing
of package digest hashes to package metadata in the generated metadata tree
just discussed.

Any file or directory that does not end in .dpm is skipped during the generation of
the REPO_MANIFEST file.

The $file_path is relative to the top-level directory of the repository.

PUBKEYS
This directory contains the public keys and everything needed to validate package
cryptographic signatures.

Packages Directory
The packages directory in the DPM repository is very simple. It is an arbitrary
directory structure containing at least .dpm files.

If files that do not end in .dpm are included this is fine and these files will not be
processed during a run of dpm_create-repo.

Repository Creation
After building out the packages directory structure, the user runs dpm_create-
repo. This command generates the repository metadata tree and populates the
REPO_MANIFEST inside it, before using that data to create metadata.db.

dpm_create-repo walks through the packages directory tree, extracting the
package metadata, signatures archives to do this before rendering the

downloadable database.

Repository Usage
DON downloads cache repository metadata with a configurable TTL. It will then
query the databases it has cached from all repositories when performing an
operation.

