
DPM Specification Files
To build a package, you’ll need a specification file.

A spec file is a file that dpm is told to create a package with. Think of it as a
configuration file for the build process for DPM packages.

For an example, imagine you’re building a package. You’ve populated your
directory tree and you’re ready to make the package. You’d run something like
this:

dpm buildpkg --spec=./MyApp.SPEC --contents-path=./contents

This is telling DPM to pass the spec file path and pre-populated contents tree to
the buildpkg module. The package creation module would read the spec file’s
contents and generate a package based on those contents. This allows repeatable
package builds.

On Source Compilation: DPM doesn’t do
it.
Bear in mind that the use of the word build here is not meant to convey source
compilation. The compilation of binaries and the packaging of pre-compiled
binaries are wholly separate processes that never should have been merged into a
single unit of work, and DPM solves this problem by not attempting to include
source compilation in any of its features — it assumes that the packager has
already done this.

There is room in the design for support for a SDPM file format, but this is not a
priority for the system as a whole — merely allowance in the design for the
capability of handling this, which will be elaborated on in a dedicated section for
SDPM compilation.

DPM Spec File Structure
The DPM spec file is a structured file with headers for each section. Each section
is intended to be used by DPM during the buildpkg process to populate:

https://dpm.darkhorselinux.org/specification-files/

the package metadata
the optional signature archive
the DPM hooks contents

Syntax
Syntax is very simple. The file is read line by line and contains three types of data:

Comments
Section Start/Stop declarations
Section Content

Sections have a reserved name that match the corresponding filename in the
DPM Package specification.

Comments
Commented lines start with a # symbol.

Sections
Each field represents a data value that the package will need.

To start a section, the maintainer would have:

%section metadata.NAME

To likewise end a section:

%section_end metadata.NAME

Whatever is between these values will become the value in the resulting
packages’ metadata. In the event that a section is multiline but the value is a
single-line string, only the first line will be read.

Whitespace between sections will not be read.

Environment Variables
Environment variables can be interpolated in DPM Spec files. Their notation is a
preceding '[[' and proceeding ']]' with a single space as padding around the
variable name.

So, if you set an environment variable prior to reading it DPM will interpolate it in
the SPEC file:

yourshellprompt# PKG_NAME="Apache2"

... spec file ...

...
%section metadata.NAME
[[PKG_NAME]]
%section_end metadata.NAME

Then [[PKG_NAME]] will be replaced with the string Apache2.

If you would like to avoid negation of a variable name for a section declaration for
whatever reason, such as when working with layers of templating engines, you
can wrap literal statements with [%literal] and [%/literal] indicators.

%section hooks.POST-INSTALL
echo "adding [%literal] [[PKG_NAME]] to %section hooks.POST-
INSTALL [%/literal]"
%section_end hooks.POST-INSTALL

In this example, the echoed text will be:

adding [[PKG_NAME]] to %section hooks.POST-INSTALL

This allows the maintainer to do layered templating approaches of large sets of
packages.

If a variable is referenced but is empty or not defined, DPM will refuse to build
the package and cite usage of an uninitialized variable as the reason.

Reserved Names
Reserved names for sections are:

hooks

hooks.POST-INSTALL1.
hooks.POST-INSTALL_ROLLBACK2.
hooks.POST-REMOVE3.
hooks.POST-REMOVE_ROLLBACK4.
hooks.POST-UPDATE5.
hooks.POST-UPDATE_ROLLBACK6.
hooks.POST-INSTALL7.
hooks.POST-INSTALL_ROLLBACK8.
hooks.PRE-REMOVE9.
hooks.PRE-REMOVE_ROLLBACK10.
hooks.PRE-UPDATE11.
hooks.PRE-UPDATE_ROLLBACK12.

metadata

metadata.ARCHITECTURE1.
metadata.AUTHOR2.
metadata.MAINTAINER3.
metadata.DEPENDENCIES4.
metadata.DESCRIPTION5.
metadata.CONTENTS_MANIFEST_DIGEST6.
metadata.LICENSE7.
metadata.NAME8.
metadata.PROVIDES9.
metadata.REPLACES10.
metadata.SOURCE11.
metadata.CHANGELOG12.
metadata.VERSION13.

On Signatures
You will likely immediately notice that there is no mention of signatures. That’s
because building a package and signing a package are different things, and
signing is handled by a different DPM module prior to zipping up the package

after the metadata is generated by the SPEC file. Once generated, the resulting
directory structure is able to be finalized into a packaged, or optionally signed
first and then finalized.

Example DPM Spec File
This is an example DPM Spec file.
This is a comment.
Created by Chris Punches on 2025-02-22.

Whitespace is ignored between sections.
Comments are processed as ignored between sections.
Otherwise, they're included in the section data.

The name of the software we're creating.
%section metadata.NAME
MyApp
%section_end metadata.NAME

The version of the software.
%section metadata.VERSION
0.1.0
%section_end metadata.VERSION

The author of the software.
%section metadata.AUTHOR
Chris Punches <chris.punches@silogroup.org>
%section_end metadata.AUTHOR

Source of the software. Usually a URL where an archive
of the source code can be downloaded.
%section metadata.SOURCE
https://source.silogroup.org/Dark-Horse-Linux/pyrois
%section_end metadata.SOURCE

The package maintainer.
%section metadata.MAINTAINER
Chris Punches <chris.punches@silogroup.org>
%section_end metadata.MAINTAINER

Changelog - the changelog for THIS PACKAGE

%section metadata.CHANGELOG
*2025-02-23 Chris Punches chris.punches@silogroup.org
First draft.
%section_end metadata.CHANGELOG

The license (used for compliance tracking).
%section metadata.LICENSE
A/GPL 3.0
%section_end metadata.LICENSE

The architecture. For this example, we'll supply it as an
environment variable.
%section metadata.ARCHITECTURE
[[target_architecture]]
%section_end metadata.ARCHITECTURE

Dependencies -- this is multiline.
These are packages, and their versions, that must be present
in the DPMDB in order for this package to meet its required
dependencies.
%section metadata.DEPENDENCIES
glibc >= 2.21
glibc <= 2.39
libstdc++ > 0
%section_end metadata.DEPENDENCIES

Provides -- these are package aliases for meeting
interchangeable dependencies. Left blank here.
%section metadata.PROVIDES
%section_end metadata.PROVIDES

Replaces -- these are packages this package is meant to
replace.
%section metadata.REPLACES
%section_end metadata.REPLACES

hooks -- these are triggered when the maintainer populates
them and these are assumed to be shell scripts (/bin/sh not
necessarily /bin/bash).
%section hooks.POST-INSTALL
%section_end hooks.POST-INSTALL

%section hooks.POST-INSTALL_ROLLBACK
%section_end hooks.POST-INSTALL_ROLLBACK

%section hooks.POST-REMOVE
%section_end hooks.POST-REMOVE
%section hooks.POST-REMOVE_ROLLBACK
%section_end hooks.POST-REMOVE_ROLLBACK

%section hooks.POST-UPDATE
systemctl start MyAppD
%section_end hooks.POST-UPDATE
%section hooks.POST-UPDATE_ROLLBACK
%section_end hooks.POST-UPDATE_ROLLBACK

%section hooks.PRE-INSTALL
%section_end hooks.PRE-INSTALL
%section hooks.PRE-INSTALL_ROLLBACK
%section_end hooks.PRE-INSTALL_ROLLBACK

%section hooks.PRE-REMOVE
systemctl stop MyAppD
%section_end hooks.PRE-REMOVE
%section hooks.PRE-REMOVE_ROLLBACK
systemctl start MyAppD
%section_end hooks.PRE-REMOVE_ROLLBACK

%section hooks.PRE-UPDATE
systemctl stop MyAppD
%section_end hooks.PRE-UPDATE
%section hooks.PRE-UPDATE_ROLLBACK
systemctl start MyAppD
%section_end hooks.PRE-UPDATE_ROLLBACK

The spec file format is simple and easy for a human to edit, and this can be
populated with a web form in just a few seconds, or generated from a template.

